
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 9. November 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 8 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 16 November 2020, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Exercise 8.1 Search Trees (1 point).

a) Draw the resulting tree when the keys 1, 3, 6, 5, 4, 8, 7, 2 in this order are inserted into an initially
empty binary (natural) search tree.

Solution:

1

3

2 6

5

4

8

7

b) Delete key 8 in the above tree, and a�erwards key 3 in the resulting tree.

Solution: Key 8 has one child 7, so it can just be replaced by 7:



1

3

2 6

5

4

7

Key 3 must either be replaced by its predecessor key, 2, or its successor key, 4. If key 3 is replaced
by its predecessor:

1

2

6

5

4

7

If key 3 is instead replaced by its successor:

1

4

2 6

5 7

c) Draw the resulting tree when the keys are inserted into an initially empty AVL tree. Give also the
intermediate states before and a�er each rotation that is performed during the process.

Solution:

Insert 1 and then 3:

2



1

3

Insert 6:

1

3

6

3

1 6
Rotate le�. Pivot = 3

Insert 5 and then 4:

3

1 6

5

4

3

1 5

4 6

Rotate right. Pivot = 5

Insert 8:

3

1 5

4 6

8

5

3

1 4

6

8

Rotate le�. Pivot = 5

Insert 7:

3



5

3

1 4

6

8

7

5

3

1 4

6

7

8

5

3

1 4

7

6 8

Rotate right. Pivot = 7 Rotate le�. Pivot = 7

Insert 2:

5

3

1

2

4

7

6 8

d) Consider the following AVL tree:

4

2

1 3

7

5

6

8

Delete key 8 in this tree, and a�erwards key 2 in the resulting tree. Give also the intermediate states
before and a�er each rotation is performed during the process.

Solution:

Delete 8:

4



4

2

1 3

7

5

6

4

2

1 3

7

6

5

4

2

1 3

6

5 7

Rotate le�. Pivot = 6 Rotate right. Pivot = 6

Delete 2:

Key 2 can either be replaced by its predecessor key, 1, or its successor key, 3. If key 2 is replaced by
its predecessor:

4

1

3

6

5 7

If key 2 is instead replaced by its successor:

4

3

1

6

5 7

Exercise 8.2 Finding an invariant (exercise 6.5. revisited).

1 3 2 1

3 2 1 1

A

B

Figure 1: Runner problem for a cost array of size 2× 5.

In this exercise we revisit exercise 5 from sheet 6, where we had a runner who wants to run from A
to B in Fig. 1. �ere are two lanes available. One is represented by the �rst row and the other by the
second row. On some sections, the �rst lane is faster than the second lane, and vice versa. �e runner

5



can change lanes at any time, but this costs 1 minute every time. In this exercise, you are supposed to
provide a dynamic programming algorithm that computes the optimal track.

Formally, the problem is de�ned in terms of a cost array c ∈ N2×n. In Fig. 1 n = 5. Now, the runner
starts at position (1, 1) and wants to run to (2, n). Running along a lane from �eld (i, j) to the �eld
(i, j + 1) requires ci,j+1 minutes. Changing lanes from �eld (1, j) to (2, j) requires 1 + c2,j minutes,
and from �eld (2, j) to (1, j) requires 1 + c1,j minutes.

Consider the following implementation of our DP solution for computing the minimal time required to
get fromA toB (note that in this implementation previous and DP are both one dimensional arrays
with 2 elements):

Algorithm 1 optimal time(c)

previous← [0, 1 + c2,1]
DP← [0, 0]
for j = 2, . . . , n do

DP[1] = min(previous[1] + c1,j ,previous[2] + c2,j + c1,j + 1)
DP[2] = min(previous[2] + c2,j ,previous[1] + c1,j + c2,j + 1)
previous← DP
// Your invariant from a) must hold here.

return previous[2]

Note that this implementation is more memory-e�cient than the solution of 6.5. It only requires O(1)
additional memory. (It also has disadvantages: it only computes the optimal time,not the corresponding
track.) Your task is to prove that this algorithm is correct.

a) Formulate an invariant INV (j) that holds a�er the iteration with the running index j of the for
loop.

Solution: We are going to use the following invariant INV (j): ”A�er iteration j, previous[1]
contains the minimal time required to reach (1, j) and previous[2] the minimal time required to
reach (2, j).”

Moreover, we will show that the same statement holds for j = 1 a�er initialization previous
(before the �rst for loop).

b) Prove the correctness of the algorithm optimal time by induction using your invariant.

Solution:

Base case j = 1 �e initialization of previous before the loop sets it to the minimal times re-
quired to reach (1, 1) and (2, 1) respectively. We can think of this as the �rst loop iteration
j = 1. �us, INV (1) holds.

Induction hypothesis For some j ≥ 1 our invariant INV (j) holds.

Induction step j → j + 1 In the iteration j+1,DP[1] = min(previous[1]+c1,j+1,previous[2]+
c2,j+1+c1,j+1+1) is computed. Because of our induction hypothesis previous contains the
minimal times to reach (1, j) and (2, j) respectively. We claim that DP[1] is set to the minimal
time required to reach (1, j + 1). Indeed, every way to get there must either leave the j-th
column from (1, j) or (2, j). In the �rst case, the additional time to reach (1, j + 1) is exactly
c1,j+1, in the second case it is c2,j+1 + c1,j+1 + 1, since the only way to reach (1, j + 1) is to
switch lanes from (2, j+1). �e minimum selects the be�er one of the two, so we have indeed

6



shown that DP[1] is set to the minimal time required to reach (1, j + 1). �e exact same argu-
mentation applies to the computation DP[2] = min(previous[2] + c2,j+1,previous[1] +
c1,j+1 + c2,j+1 + 1). Accordingly, DP[2] contains thanks to our induction hypothesis the mi-
nimal time required to reach (2, j + 1). Now, previous is set to DP which concludes our
step.

�e algorithm optimal time returns previous[2] which contains the minimal time requi-
red to reach (2, n) (or in other words B). �erefore, by the principle of mathematical induction
optimal time computes the minimal time required to reach B from A.

Exercise 8.3 Exponential bounds for a sequence de�ned inductively.

Consider the sequence (an)n∈N de�ned by

a0 = 1,

a1 = 1,

a2 = 2,

ai = ai−1 + 2ai−2 + ai−3 ∀i ≥ 3.

�e goal of this exercise is to �nd exponential lower and upper bounds for an.

a) Find a constant C > 1 such that an ≤ O(Cn) and prove your statement.

Solution:

Intuitively, the sequence (an)n∈N seems to be increasing. Assuming so, we would have

ai = ai−1 + 2ai−2 + ai−3 ≤ ai−1 + 2ai−1 + ai−1 = 4ai−1,

which yields

an ≤ 4an−1 ≤ . . . ≤ 4na0 = 4n.

�is only comes from an intuition, but it is a good way to guess what the upper bound could be.
Now let us actually prove (by induction) that an ≤ 4n for all n ∈ N.

Induction Hypothesis. We assume that for k ≥ 2 we have

ak ≤ 4k, ak−1 ≤ 4k−1, ak−2 ≤ 4k−2. (1)

Base case k = 2. Indeed we have a0 = 1 ≤ 40, a1 = 1 ≤ 41 and a2 = 2 ≤ 42.

Inductive step (k → k+1). Let k ≥ 2 and assume that the induction hypothesis (1) holds. To show
that it also holds for k + 1, we need to check that ak+1 ≤ 4k+1, ak ≤ 4k and ak−1 ≤ 4k−1. �e
two last inequalities clearly hold since they are part of the induction hypothesis, so we only need to
check that ak+1 ≤ 4k+1. Indeed,

ak+1 = ak + 2ak−1 + ak−2
(1)
≤ 4k + 2 · 4k−1 + 4k−2 ≤ 4k + 2 · 4k + 4k = 4 · 4k = 4k+1.

�us, an ≤ 4n for all n ∈ N. In particular, we have shown that an ≤ O(Cn) for C = 4 > 1.

b) Find a constant c > 1 such that an ≥ Ω(cn) and prove your statement.

Solution:

7



If we again assume that the sequence is increasing, we would get

ai = ai−1 + 2ai−2 + ai−3 ≥ ai−3 + 2ai−3 + ai−3 = 4ai−3,

which yields

an ≥ 4an−3 ≥ . . . ≥ 4bn/3ca0 = 4bn/3c.

So we will aim to prove a lower bound of the form an ≥ ε · 4n/3 for some constant ε > 0. We see
that taking ε := min{1, 4−1/3, 2 · 4−2/3} = 4−1/3 will make the inequality satis�ed for the base
case, so let’s prove by induction that an ≥ 4−1/34n/3 for all n ∈ N.

Induction Hypothesis. We assume that for k ≥ 2 we have

ak ≥ 4−1/34k/3, ak−1 ≥ 4−1/34(k−1)/3, ak−2 ≥ 4−1/34(k−2)/3. (2)

Base case k = 2. Indeed we have a0 = 1 ≥ 4−1/3 · 40, a1 = 1 ≥ 4−1/341/3 and a2 = 2 ≥ 41/3 =
4−1/342/3.

Inductive step (k → k + 1). Let k ≥ 2 and assume that the induction hypothesis (2) holds. To
show that it also holds for k + 1, we need to check that ak+1 ≥ 4−1/34(k+1)/3, ak ≥ 4−1/34k/3 and
ak−1 ≥ 4−1/34(k−1)/3. �e two last inequalities clearly hold since they are part of the induction
hypothesis, so we only need to check that ak+1 ≥ 4−1/34(k+1)/3. Indeed,

ak+1 = ak + 2ak−1 + ak−2
(2)
≥ 4−1/3

(
4k/3 + 2 · 4(k−1)/3 + 4(k−2)/3

)
≥ 4−1/3

(
4(k−2)/3 + 2 · 4(k−2)/3 + 4(k−2)/3

)
= 4−1/3 · 4 · 4(k−2)/3 = 4−1/34(k+1)/3.

�us, an ≥ 4−1/34n/3 for all n ∈ N. In particular, we have shown that an ≥ Ω(cn) for c = 41/3 > 1.

Remark. One can actually show that an = Θ(φn), where φ ≈ 2.148 is the unique positive solution of
the equation x3 = x2 + 2x+ 1.

Exercise 8.4 �e (2, 3)-tree datastructure (2 points).

A (2,3)-tree is a tree in which each inner node has between 2 and 3 children. Additionally, all leaves are
at the same depth. �ere are two di�erent types of inner nodes:

1. 2-nodes: A 2-node is a node with two children l and r of the same height.

2. 3-nodes: A 3-node is a node with three children l,m and r of the same height.

�e keys are stored in the leafs and ordered from le� to right.

1 2 3 5 6 7 9 10 16 20 22 24 33 44

8



a) Come up with a way to augment the inner nodes with information that enables e�cient search for
keys. Provide pseudocode of your search method.

Solution: We augment each 2-node by one integer a that is larger than all the keys in its subtree l
and smaller or equal to the smallest key in r. Similarly, we augment each 3-node by two integers a
and b such that all keys in l are smaller than a, all keys inm are greater or equal a, all keys inm are
smaller than b and all keys in r are greater or equal b. One way to augment the example above is:

9

5

2, 3

1 2 3

6, 7

5 6 7

16, 24

10

9 10

20, 22

16 20 22

33, 44

24 33 44

Using our augmentation, searching for a key in a (2, 3)-tree becomes similar to searching for a key
in a binary tree. Let T be the root of our (2, 3)-tree and k the key we are looking for.

Algorithm 2 search(T, k)
if T is a leaf then

if T.key = k then
return We found the key.

else
return �e (2,3)-tree does not contain the key.

else if T is a 2-node then
if k < T.a then

return search(T.l, k)
else

return search(T.r, k)
else if T is a 3-node then

if k < T.a then
return search(T.l, k)

else if k < T.b then
return search(T.m, k)

else
return search(T.r, k)

b) Find a way to insert a new key at the correct position. Your method should run in timeO(h), where
h is the height of the (2,3)-tree. Provide pseudocode of your insertion method. You may ignore
the information in the inner nodes for this task, i.e., you don’t need to describe how to update this

9



information. Also, you don’t need to discuss how exactly you would store the nodes. You can assume
that from a node, you can access parent, siblings and children in constant time.

Hint: When the parent of the new leaf has more than 3 leafs a�er the insertion, split it into two. Be
cautious, what happens to the ’grandparent’?

Solution:

Algorithm 3 insert(T, k)
if k already is in T then

We are done.
else

Find the parent of the key k (i.e., traverse the tree as in search).
We end up with the largest leaf L with a smaller key.
We add a new leaf with the key k to the parent P of L, on the right side of L.
(Or as le�most child of P if k is smaller than all keys in T .)
repair(P ) // P might have too many children.

Algorithm 4 repair(P)
if P has at most three children then

Nothing to do.
else // P has four children

if P is not the root then
We split P into two nodes P1 and P2, i.e., P1 and P2 are now two consecutive
children of the parent S of P . We split the four children of P between P1 and P2:
We put the two smaller children below P1 and the larger ones below P2.
repair(S) // S might have too many children.

else // P is the root
We split P into P1 and P2 as before, but we create a new root R with children P1 and P2.

�e insertion runs in time O(h), because �nding the position to insert the new key is in O(h) as
we only have to follow one path from the root to a leaf. Adding the new key to a 2-node requires
only constant time. Each repair procedure requires constant time before the recursive call, and in
each repair procedure we go up one level (or stop). So the number of repair procedure is at most the
number of levels.

c) Insert the key 8 into the example above and draw the result. Now, insert the key 11 into the tree
from the previous step and draw the result. Finally, insert the key 4 into the tree from the previous
step and draw the result.

Solution: Inserting 8 yields:

10



9

6, 8

2, 3

1 2 3

6

5 6

8

7 8

20, 33

10

9 10

20, 22

16 20 22

33, 44

24 33 44

Now, inserting 11 yields:

9

6, 8

2, 3

1 2 3

6

5 6

8

7 8

20, 33

10

9 10 11

20, 22

16 20 22

33, 44

24 33 44

When inserting 4 we need two repair steps. First repair step:

9

6, 8

2

1 2

4

3 4

6

5 6

8

7 8

20, 33

10

9 10 11

20, 22

16 20 22

33, 44

24 33 44

11



Now the ’6, 8’-node has four children and we need to perform a second repair step:

9

3

2

1 2

4

3 4

7

6

5 6

8

7 8

20, 33

10

9 10 11

20, 22

16 20 22

33, 44

24 33 44

d) Prove asymptotically matching upper and lower bounds for the height h of a (2,3)-tree with n leaves.
“Asymptotically matching” means that they are of the form h = O(f(n)) and h = Ω(f(n)) for the
same function f(n).

Solution: On the zero-th level, there is exactly one vertex (the root). Each vertex has either 2 or 3
children. So if there are xi vertices on level i, then th number of vertices on level i + 1 is bounded
by 2xi ≤ xi+1 ≤ 3xi. By a trivial induction, the number of vertices in level i is therefore between
2i and 3i. In particular, since the leaves are the vertices in level h, the number n of leaves satis�es
2h ≤ n ≤ 3h. Solving both inequalities for h yields log3(n) ≤ h ≤ log2(n), and therefore h =
Θ(log n).

12


